每个产品经理都知道数据分析很重要,但你能清晰的给出以下这两个问题的答案吗?
如果在这之前你不知道答案也没关系,因为本文会围绕以下几点回答以上两个问题:
简而言之,数据分析表征产品状态、用户行为和用户所点击的内容等等。虽然数据表征产品状态,但它没有表明产品所处状态的原因。数据分析不能只靠单一的度量数据,应以一系列汇聚的度量数据为前提。
例如,如果我们要分析某个物体状态,我们就不能只用物体温度这个单一度量数据,只有结合其他诸如物体位置、速度、组成、环境温度等一系列数据,我们才能实施分析。假设速度是0,物体位置离地面1米,周围温度与物体一样,我们可以分析得出结论——物体处于静止状态。
同理,我们在分析产品状态和用户行为时,汇聚的度量数据越多,对我们越有利。
想要从数据分析中获得最大价值,我们需要非常了解数据分析的相关概念。这些概念包括:
数据点
数据点,即数据的单独点。数据点度量产品某个特定项目,包括度量数据和度量时间。准确的数据点是我们绘制产品发展趋势图表的前提。
用户分群
用户分群的依据是用户共同特征和产品使用模式。
用户分群的依据包括但不限于:
在对用户进行自定义分群时,我们需要依据可以度量的特征。例如,用户性别就是可以度量的特征。只要我们在用户个人资料里添加性别这一项,我们就可以采集到相关数据,这样以性别作为分群依据就不难。
我们可以通过 用户分群 了解用户潜在的行为模式。数据平均值会掩盖这些潜在行为模式。例如,虽然页面平均访问量是2,但是在添加了初次访问vs回访这个细分特征之后,我们发现初次访问者的平均页面浏览量是1.2,而回访者的平均页面浏览量是3.4。如果不进行用户分群,初访者和回访者页面浏览量的差异就会被页面浏览量的平均值所掩盖。
通过用户分群,我们可以把数据分析重点集中在主要目标用户群体。例如,我们的主要目标用户分布在华东地区,只要区分华东各省市用户群体并重点分析这些地域的用户行为,就可以优化产品以适应他们的需求,而不是针对全国用户进行产品优化。
漏斗模型
漏斗模型主要用于流量监控、产品目标转化等日常 数据运营 与数据分析工作。为了达到目的,用户会执行一系列操作。例如,在电商平台上,用户为了实现购买的目的,会执行以下操作:时序分群
时序分群与用户分群类似,区别是时序分群的目的是比较分析用户行为随着时间的变化。时序分群有利于我们衡量用户长期价值。
时序分群之后可以进行不同的比较,例如,我们可以比较一周前的注册用户和一个月前的注册用户,也可以比较某个特定日期的注册用户。如果我们没有针对一周前和一个月前的用户进行分群,那么新进来的用户会干扰我们分析这两个时间段的用户行为。对某个特定时间段的用户进行比较时,我们可以衡量某个营销活动或者产品某个功能更新后对用户行为产生的影响。上图是一个基于用户注册时间的留存图。与其他用户群相比,十月八日这一天的用户留存显著增加。当我们看到这个数据时我们可以探索是什么导致了用户留存的改变。
产品经理会接触到海量的数据,那么我们应该如何实施数据分析?我们需要制定如下计划:
为了更好地制定计划,我们需要了解计划里的相关概念。
产品愿景
产品愿景指产品用途和目标用户,简而言之,“产品为用户解决了什么问题?”没有产品愿景,我们接下来的所有行动都是浪费时间。
KPI
KPI衡量产品表现。拉新,留存,活跃,转化等这些都属于KPI的范畴。我们还可以用KPI制定产品发展目标,譬如将用户注册量提高20%或者将购买转化率提高30%。KPI要适合产品所处阶段,如果我们刚开始创业,那么主要KPI就是用户注册量,而不是用户活跃度。
度量指标
度量指标是达成KPI的手段。度量指标一般有转化率,购买率等等。通过计算两个或多个数据点,我们可以得到度量指标数据。同时,度量指标的变化趋势也是产品改进的依据。
漏斗
重要的漏斗会以某种方式改变度量指标。在确立产品使用流程/用户行为日志后,我们依据度量指标和用户行为制定相关漏斗模型。以注册率为度量指标和以转化率为度量指标所制作的漏斗模型不可能相同。
获得数据点
获得可测量的数据点对达成KPI, 计算度量指标数据,制作漏斗意义重大。
计划并非一成不变,我们需要根据产品愿景、KPI等适时更新计划。
方法有两种:建立内部分析系统,或者依赖第三方的分析系统。
内部分析系统可以根据度量指标进行定制开发。缺点是我们需要耗费资源单独建立和维护。
外部分析系统,譬如Google Analytics, Mixpanel等都是不错的选择。第三方的分析系统易于实现且不会浪费建立和维护所需要的资源。Cobub Razor是国内一款专业的 APP数据统计 分析工具,支持私有化部署,数据既灵活又安全,是个不错的选择。
通常我们通过制作比较图表和趋势图表来做数据分析报告。
比较图表体现某个度量指标在两个时间点之间的变化,比如某个度量指标在上个星期和这个星期之间的变化。它让我们看到两个时间点之间度量指标是否有较大的波动。
趋势图表体现某个度量指标在一段时间内的变化,例如某个度量指标在过去一个月内的变化。它显示度量指标的变化方向,指明产品表现——变好、变差还是保持不变?
报告定位出问题,然后通过尝试回答“为什么XX会发生?”“为什么YY会改变?”这些问题,我们可以优化和改进产品。
我们依据数据分析结果改进产品。如果没有数据分析,我们容易盲目改变产品,拍脑袋决策;如果没有数据分析,我们也不能知道产品改变之后所产生的效果。在产品发展的过程中,我们需要不断地进行数据分析,以保证产品按照我们的期望发展。
为了产品不断的推陈出新,更好的满足用户的需求,产品经理必须知道数据分析是什么以及数据分析的重要性。希望本文能对广大产品经理有所帮助。