此处梳理出面向人工智能的机器学习方法体系,理清机器学习脉络。
监督学习 Supervised learning
Fisher的线性判别 Fisher's linear discriminant
线性回归 Linear regression
Logistic回归 Logistic regression
多项Logistic回归 Multinomial logistic regression
朴素贝叶斯分类器 Naive Bayes classifier
感知 Perceptron
支持向量机 Support vector machine
分类和回归树(CART) Classification and regression tree (CART)
迭代Dichotomiser 3(ID3) Iterative Dichotomiser 3(ID3)
C4.5算法 C4.5 algorithm
C5.0算法 C5.0 algorithm
卡方自动交互检测(CHAID) Chi-squared Automatic Interaction Detection(CHAID)
决策残端 Decision stump
ID3算法 ID3 algorithm
随机森林 Random forest
SLIQ
朴素贝叶斯 Naive Bayes
高斯贝叶斯 Gaussian Naive Bayes
多项朴素贝叶斯 Multinomial Naive Bayes
平均一依赖性评估(AODE) Averaged One-Dependence Estimators(AODE)
贝叶斯信念网络(BNN) Bayesian Belief Network(BBN)
贝叶斯网络(BN) Bayesian Network(BN)
自动编码器 Autoencoder
反向传播 Backpropagation
玻尔兹曼机 Boltzmann machine
卷积神经网络 Convolutional neural network
Hopfield网络 Hopfield network
多层感知器 Multilayer perceptron
径向基函数网络(RBFN) Radial basis function network(RBFN)
受限玻尔兹曼机 Restricted Boltzmann machine
回归神经网络(RNN) Recurrent neural network(RNN)
自组织映射(SOM) Self-organizing map(SOM)
尖峰神经网络 Spiking neural network
人工神经网络 Artificial neural network
贝叶斯 Bayesian
决策树 Decision Tree
线性分类 Linear classifier
无监督学习 Unsupervised learning
k-最近邻算法(K-NN) k-nearest neighbors classification(K-NN)
局部异常因子 Local outlier factor
BIRCH
DBSCAN
期望最大化(EM) Expectation-maximization(EM)
模糊聚类 Fuzzy clustering
K-means算法 K-means algorithm
k-均值聚类 K-means clustering
k-位数 K-medians
平均移 Mean-shift
OPTICS算法 OPTICS algorithm
单连锁聚类 Single-linkage clustering
概念聚类 Conceptual clustering
先验算法 Apriori algorithm
Eclat算法 Eclat algorithm
FP-growth算法 FP-growth algorithm
对抗生成网络
前馈神经网络 Feedforward neurral network
逻辑学习机 Logic learning machine
自组织映射 Self-organizing map
极端学习机 Extreme learning machine
人工神经网络 Artificial neural network
关联规则学习 Association rule learning
分层聚类 Hierarchical clustering
聚类分析 Cluster analysis
异常检测 Anomaly detection
半监督学习 Semi-supervised learning
生成模型 Generative models
低密度分离 Low-density separation
基于图形的方法 Graph-based methods
联合训练 Co-training
强化学习 Reinforcement learning
时间差分学习 Temporal difference learning
Q学习 Q-learning
学习自动 Learning Automata
状态-行动-回馈-状态-行动(SARSA) State-Action-Reward-State-Action(SARSA)
深度学习 Deep learning
深度信念网络 Deep belief machines
深度卷积神经网络 Deep Convolutional neural networks
深度递归神经网络 Deep Recurrent neural networks
分层时间记忆 Hierarchical temporal memory
深度玻尔兹曼机(DBM) Deep Boltzmann Machine(DBM)
堆叠自动编码器 Stacked Boltzmann Machine
生成式对抗网络 Generative adversarial networks
迁移学习 Transfer learning
传递式迁移学习 Transitive Transfer Learning
其他
主成分分析(PCA) Principal component analysis(PCA)
主成分回归(PCR) Principal component regression(PCR)
因子分析 Factor analysis
Bootstrap aggregating (Bagging)
AdaBoost
梯度提升机(GBM) Gradient boosting machine(GBM)
梯度提升决策树(GBRT) Gradient boosted decision tree(GBRT)
集成学习算法
降维
R语言作为一种数据分析专业语言,是当今数据科学领域最流行的开源编程语言之一,在数据分析与机器学习领域已经成为一款最重要的工具。精通R语言的数据分析师是企业竞相争抢的高薪人才!
第8期R语言数据分析&机器学习高级实战课程正在火热报名中!扫码送课程详细介绍!